
11/02/22 11:38Lecture notes - Chapter 6 - Integer Arithmetic

Página 1 de 7http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.int.html

Chapter 6 -- integer arithmetic

all about integer arithmetic.

operations we'll get to know (and love):
 addition
 subtraction
 multiplication
 division
 logical operations (not, and, or, nand, nor, xor, xnor)
 shifting

the rules for doing the arithmetic operations vary depending
on what representation is implied.

A LITTLE BIT ON ADDING

 an overview.

 carry in a b | sum carry out
 ---------------+----------------
 0 0 0 | 0 0
 0 0 1 | 1 0
 0 1 0 | 1 0
 0 1 1 | 0 1
 1 0 0 | 1 0
 1 0 1 | 0 1
 1 1 0 | 0 1
 1 1 1 | 1 1
 |

 a 0011
 +b +0001
 -- -----
 sum 0100

 its really just like we do for decimal!
 0 + 0 = 0
 1 + 0 = 1
 1 + 1 = 2 which is 10 in binary, sum is 0 and carry the 1.
 1 + 1 + 1 = 3 sum is 1, and carry a 1.

ADDITION

unsigned:
 just like the simple addition given.

 examples:

11/02/22 11:38Lecture notes - Chapter 6 - Integer Arithmetic

Página 2 de 7http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.int.html

 100001 00001010 (10)
 +011101 +00001110 (14)
 ------- ---------
 111110 00011000 (24)

 ignore (throw away) carry out of the msb.
 Why? Because computers ALWAYS work with a fixed precision.

sign magnitude:

 rules:
 - add magnitudes only (do not carry into the sign bit)
 - throw away any carry out of the msb of the magnitude
 (Due, again, to the fixed precision constraints.)
 - add only integers of like sign (+ to + or - to -)
 - sign of result is same as sign of the addends

 examples:

 0 0101 (5) 1 1010 (-10)
 + 0 0011 (3) + 1 0011 (-3)
 --------- ---------
 0 1000 (8) 1 1101 (-13)

 0 01011 (11)
 + 1 01110 (-14)

 don't add! must do subtraction!

one's complement:

 by example

 00111 (7) 111110 (-1) 11110 (-1)
 + 00101 (5) + 000010 (2) + 11100 (-3)
 ----------- ------------ ------------
 01100 (12) 1 000000 (0) wrong! 1 11010 (-5) wrong!
 + 1 + 1
 ---------- ----------
 000001 (1) right! 11011 (-4) right!

 so it seems that if there is a carry out (of 1) from the msb, then
 the result will be off by 1, so add 1 again to get the correct
 result. (Implementation in HW called an "end around carrry.")

two's complement:

 rules:

11/02/22 11:38Lecture notes - Chapter 6 - Integer Arithmetic

Página 3 de 7http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.int.html

 - just add all the bits
 - throw away any carry out of the msb
 - (same as for unsigned!)

 examples

 00011 (3) 101000 111111 (-1)
 + 11100 (-4) + 010000 + 001000 (8)
 ------------ -------- --------
 11111 (-1) 111000 1 000111 (7)

after seeing examples for all these representations, you may see
why 2's complement addition requires simpler hardware than
sign mag. or one's complement addition.

SUBTRACTION

 general rules:
 1 - 1 = 0
 0 - 0 = 0
 1 - 0 = 1
 10 - 1 = 1
 0 - 1 = borrow!

unsigned:

 - it only makes sense to subtract a smaller number from a larger one

 examples

 1011 (11) must borrow
 - 0111 (7)

 0100 (4)

sign magnitude:

 - if the signs are the same, then do subtraction
 - if signs are different, then change the problem to addition
 - compare magnitudes, then subtract smaller from larger
 - if the order is switched, then switch the sign too.

 - when the integers are of the opposite sign, then do
 a - b becomes a + (-b)
 a + b becomes a - (-b)

 examples

 0 00111 (7) 1 11000 (-24)
 - 0 11000 (24) - 1 00010 (-2)

11/02/22 11:38Lecture notes - Chapter 6 - Integer Arithmetic

Página 4 de 7http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.int.html

 -------------- --------------
 1 10110 (-22)
do 0 11000 (24)
 - 0 00111 (7)

 1 10001 (-17)
 (switch sign since the order of the subtraction was reversed)

one's complement:

 figure it out on your own

two's complement:

 - change the problem to addition!

 a - b becomes a + (-b)

 - so, get the additive inverse of b, and do addition.

 examples

 10110 (-10)
 - 00011 (3) --> 00011
 ------------ |
 \|/
 11100
 + 1

 11101 (-3)
 so do

 10110 (-10)
 + 11101 (-3)

 1 10011 (-13)
 (throw away carry out)

OVERFLOW DETECTION IN ADDITION

 unsigned -- when there is a carry out of the msb

 1000 (8)
 +1001 (9)

 1 0001 (1)

 sign magnitude -- when there is a carry out of the msb of the magnitude

 1 1000 (-8)
 + 1 1001 (-9)

 1 0001 (-1) (carry out of msb of magnitude)

11/02/22 11:38Lecture notes - Chapter 6 - Integer Arithmetic

Página 5 de 7http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.int.html

 2's complement -- when the signs of the addends are the same, and the
 sign of the result is different

 0011 (3)
 + 0110 (6)

 1001 (-7) (note that a correct answer would be 9, but
 9 cannot be represented in 4 bit 2's complement)

 a detail -- you will never get overflow when adding 2 numbers of
 opposite signs

OVERFLOW DETECTION IN SUBTRACTION

 unsigned -- never
 sign magnitude -- never happen when doing subtraction
 2's complement -- we never do subtraction, so use the addition rule
 on the addition operation done.

MULTIPLICATION of integers

 0 x 0 = 0
 0 x 1 = 0
 1 x 0 = 0
 1 x 1 = 1

 -- longhand, it looks just like decimal

 -- the result can require 2x as many bits as the larger multiplicand

 -- in 2's complement, to always get the right answer without
 thinking about the problem, sign extend both multiplicands to
 2x as many bits (as the larger). Then take the correct number
 of result bits from the least significant portion of the result.

 2's complement example:

 1111 1111 -1
 x 1111 1001 x -7
 ---------------- ------
 11111111 7
 00000000
 00000000
 11111111
 11111111
 11111111
 11111111
 + 11111111

 1 00000000111
 -------- (correct answer underlined)

11/02/22 11:38Lecture notes - Chapter 6 - Integer Arithmetic

Página 6 de 7http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.int.html

 0011 (3) 0000 0011 (3)
 x 1011 (-5) x 1111 1011 (-5)
 ------ -----------
 0011 00000011
 0011 00000011
 0000 00000000
 + 0011 00000011
 --------- 00000011
 0100001 00000011
 not -15 in any 00000011
 representation! + 00000011

 1011110001

 take the least significant 8 bits 11110001 = -15

DIVISION of integers
 unsigned only!

 example of 15 / 3 1111 / 011

 To do this longhand, use the same algorithm as for decimal integers.

LOGICAL OPERATIONS
 done bitwise

 X = 0011
 Y = 1010

 X AND Y is 0010
 X OR Y is 1011
 X NOR Y is 0100
 X XOR Y is 1001
 etc.

SHIFT OPERATIONS
 a way of moving bits around within a word

 3 types: logical, arithmetic and rotate
 (each type can go either left or right)

 logical left - move bits to the left, same order
 - throw away the bit that pops off the msb
 - introduce a 0 into the lsb

 00110101

 01101010 (logically left shifted by 1 bit)

 logical right - move bits to the right, same order
 - throw away the bit that pops off the lsb
 - introduce a 0 into the msb

 00110101

11/02/22 11:38Lecture notes - Chapter 6 - Integer Arithmetic

Página 7 de 7http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.int.html

 00011010 (logically right shifted by 1 bit)

 arithmetic left - move bits to the left, same order
 - throw away the bit that pops off the msb
 - introduce a 0 into the lsb
 - SAME AS LOGICAL LEFT SHIFT!

 arithmetic right - move bits to the right, same order
 - throw away the bit that pops off the lsb
 - reproduce the original msb into the new msb
 - another way of thinking about it: shift the
 bits, and then do sign extension

 00110101 -> 00011010 (arithmetically right shifted by 1 bit)

 1100 -> 1110 (arithmetically right shifted by 1 bit)

 rotate left - move bits to the left, same order
 - put the bit that pops off the msb into the lsb,
 so no bits are thrown away or lost.

 00110101 -> 01101010 (rotated left by 1 place)
 1100 -> 1001 (rotated left by 1 place)

 rotate right - move bits to the right, same order
 - put the bit that pops off the lsb into the msb,
 so no bits are thrown away or lost.

 00110101 -> 10011010 (rotated right by 1 place)
 1100 -> 0110 (rotated right by 1 place)

SASM INSTRUCTIONS FOR LOGICAL AND SHIFT OPERATIONS

 SASM has instructions that do bitwise logical operations and
 shifting operations.

 lnot x x <- NOT (x)
 land x, y x <- (x) AND (y)
 lor x, y x <- (x) OR (y)
 lxor x, y x <- (x) XOR (y)

 llsh x x <- (x), logically left shifted by 1 bit
 rlsh x x <- (x), logically right shifted by 1 bit
 rash x x <- (x), arithmetically right shifted by 1 bit
 rror x x <- (x), rotated right by 1 bit

